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We make a mathematical analysis of the structure of the two dimensional lattice formed
by the centers of parallely aligned and arbitrarily oriented spherocylindrical phospholipidic
molecules hexagonally packed in cylindrical domains forming a monomolecular Langmuir
film at the liquid–gas interface. The analysis is carried out as a function of the tilting angleθ

and the tilting azimuthφ. We give a number of expressions for thelattice radius vector, and
introduce theLattice Generating Operator. We also present a number of theorems dealing
with the existence and characteristics of thecommon points of tangency, thedouble stationary
points, thelocus circles, and theenvelop circles, related to the lattice sites.
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1. Introduction

Overview

The present work is the fifth in a series of articles, [1–4] dealing with the detailed
analytical modeling of Langmuir films as two dimensional conglomerates of phospholi-
pidic domains of parallely aligned and arbitrarily oriented spherocylindrical molecules.
The present article focuses on the structure of the two-dimensional lattice formed by
the centers of the molecules. This lattice provides the infrastructure for the analytical
description of domains. An understanding of its characteristics is crucial for the ability
to simplify the mathematical expressions arising in the evaluation of the physical prop-
erties of the domain. The degree of simplification will, to a large extent, determine the
possibility of successfully extending the detailed analytic description of domains to one
further level of complexity, that is to systems, such as Langmuir films, that have domains
as building blocks.

Relevance

Due to the considerable delocalization (smearing out) of atoms in molecules at bi-
ologically relevant probe energies (see Nagle and Tristram-Nagle [5]), as well as the in-
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herent (quantum) delocalization of electrons in atoms, spherocylindrical (rod-like) mole-
cules [6,7] provide a reasonably realistic [1], and analytically manageable [2,4], model
for phospholipidic molecules. Furthermore, the existence ofdomainsin Langmuir and
Langmuir–Blodgett films, as well as in phospholipidic bilayers, is well established, and
the importance of the role played by the collectiveorientationof the molecules in do-
mains is well recognized (see the comprehensive discussions by McConnell [8], Ul-
man [9], Zasadzinski et al. [10,11], Katsaras [12], Knobler [13,14], Katsaras and Gut-
berlet [15]).

Literature

As experimental techniques become more sophoisticated, experimental investiga-
tions of amphiphilic monolayers, bilayers, and thin films at the air–water interface and
on solid substrates are increasingly focalizing their attention ondomains, textureand
orientational order(both tilt andazimuth) at the molecular level. This trend is clearly
visible in the intensive experimental studies of the last two decades, using a number
of techniques likeX-ray diffraction [16–27], atomic force microscopy[28–36], scan-
ning force microscopy[37–40], scanning tunneling microscopy[41], Brewester angle
microscopy[25–27,42–48],fluorescence microscopy[42,49–57],liquid crystal optical
amplification[58], neutron scattering[59–61], andlateral-force microscopy[62]. The
same trend towards a detailed study ofdomains, textureandorientational orderat the
molecular level is also visible inphenomenological[63,64],simulation[65,66], andthe-
oretical [67–74] investigations.

Impact

Biological systems, are inherently multi-scale systems that cannot be adequately
understood one scale at a time. Membrane gates, for example, open and close in reac-
tion to the displacement of few ions. Thus in the long run, there is no viable biologically
relevant theoretical alternative to the detailed multi-scale analysis which is characteris-
tic of the present project, and the litterature review presented in previous section does
support this point of view.

The results obtained here, as well as in [1–4], provide a useful starting point for
perturbation calculations, for the determination of initial parameters in numerical sim-
ulations, for guiding experimental design, and for modeling related structural problems
like mixed monolayers, fluctuating molecules, and imbedded proteins.

Results

The analytic expression for the lattice formed by the centers of parallely aligned
and arbitrarily oriented spherocylindrical molecules was obtained in [3]. In the present
work we will give several additional expressions for this lattice, leading to the introduc-
tion of theLattice Generating Operator, which generates the whole lattice from a unite
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vector along a secondary axis of symmetry. We also introduce thephase anglerelated
to a lattice site.

As the tilting direction (tilt azimuth)φ varies, each lattice site describes alocus.
We show that this locus is a circle. Furthermore, we show that the locus circles corre-
sponding to different values of the tilting angleθ have acommon point of tangency, and
that this point of tangency coincides with the corresponding lattice site of the reference
lattice. This common point of tangency is also the point nearest the origin on the locus
circle, and lies on the radius vector from the origin to the center of the locus circle. We
also show that the common point of tangency is adouble stationary pointof the projec-
tion (on the plane of the lattice) of the molecular axis. That is, all the projections (as a
function ofθ andφ) of the molecular axis intersect at this point. Finally, we show that
this common point of tangency is the center of anenvelope circlefor the boundaries of
the projection (on the plane of the lattice) of the cylindrical part of the molecule.

Outline

In section 2 we setup the problem by briefly recalling the essential features of the
underlying model, the coordinate systems used, and the expression for the Tilting Oper-
ator. In section 3 we present several expressions for the lattice formed by the molecular
centers. In section 4 we analyze these latter results in order to bring out the characteris-
tics and symmetries of the lattice. In section 5 we present graphical simulations of the
analytical results obtained in the two previous sections. These provide visual proofs of
the validity of the analytical results. Appendix A is a compendium of needed results
concerning the rotation operator and its applications. In appendix B, the expression for
the lattice generating operator is worked out for the special caseφ = 0, as one more test
of the validity of the analytical results.

2. The background

2.1. Model

The model used here is that ofspherocylindrical moleculesthat areparallely
aligned, arbitrarily oriented, andclosely packedin freely rotating cylindrical domains.
We will only give a brief summary of the essential features of the model, and refer the
reader to [1–4], for details and justification. Globally the system we are dealing with is
made up of phospholipidic molecules arranged in domains forming a Langmuir film at
the liquid–gas interface. The molecules in a domain are aligned parallel to each other
(see [2, figure 3]). Their collective orientation is given by the spherical anglesθ andφ,
(see [4, figure 1]) where thez-axis is in the direction of the normal to the interface. The
molecules are assumed to be embedded in identical “virtual”, rod-like [6], spherocylin-
ders [7], having radiusr0 and cylindrical heighth (see [2, figures 1, 2 and 7]). As the
molecules are inclined they slide along each other (obliquely) in order for their polar
heads to remain tangent to a plane parallel to the interface (see [3, figures 5–8]).
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Each assembly of parallel molecules forms a “physical domain”. When this as-
sembly rotates freely about the normal to the interface, it occupies a cylindrical space
which we refer to as the virtual domain, or simply the domain (see [4, figure 2]). Hence
the domains of a Langmuir film are “virtual” right circular cylinders enveloping (cir-
cumscribing) the “physical domains” of the film. Their axes are perpendicular to the
liquid–gas interface. Their radiiR and heightsH are determined by the condition that
R andH , for each domain, be as small as possible. The heightH , for each domain, is
given byH(r0, h, θ) = 2r0+h cosθ , while the radiusR of a domain is equal to half the
largest dimension of the projection of the “physical domain” on the interface. The plane
perpendicular to the symmetry axis of the domain and situated halfway in-between its
base and top is the halfway plane (see [4, figure 3]). The cross section of the domain in
the halfway plane is a disc of radiusR.

The points of intersection of the molecular axes with the halfway plane (that is
the centers of the molecules) define a two-dimensional lattice. When the molecules of
the domain are vertically oriented we refer to this lattice as thereference lattice(see
[4, figure 4]). In the case of vertically oriented molecules, the optimal packing of sphe-
rocylindrical (rod-like) molecules ishexagonal, and consequently the reference lattice
has three principal and three secondary axes of symmetry [1]. The reference lattice is
used to define the needed coordinate systems.

2.2. Coordinate systems

Using the symmetry axes of the reference lattice, we introduce three coordinate
systems (see [4, figure 5]). The first is the(x̂, ŷ, ẑ)-coordinate system which is fixed
to the halfway plane, and defined as follows: (i) thez-axis coincides with the axis of
the circumscribing cylinder (the axis of the virtual domain), and as such it is normal
to the interface; (ii) the intersection of thez-axis with the halfway plane defines the
origin of coordinates; (iii) thexy-plane coincides with the halfway plane; (iv) thex-axis
coincides with one of the secondary axes of symmetry; (v) they-axis coincides with
one of the principal axes of symmetry. Due to the hexagonal symmetry of the reference
lattice, the above system of coordinates is orthogonal. As the molecules are tilted, the
halfway plane moves relative to the interface and this(x̂, ŷ, ẑ) coordinate system moves
with it.

The (m̂, n̂, ẑ)-coordinate system is also fixed to the halfway plane. It is obtained
from the(x̂, ŷ, ẑ)-coordinate system by a rotation of angleφ about thêz-axis. Hence

(
m̂

n̂

)
=

(
cosφ sinφ
− sinφ cosφ

) (
î

ĵ

)
, (1)

where î and ĵ are unite vectors alonĝx and ŷ, respectively. Finally, the space fixed
coordinate system(X̂, Ŷ , Ẑ) is attached to the interface. Its origin is on the interface.
Its Ẑ-axis is collinear with thêz-axis. ItsX̂Ŷ -plane coincides with the interface, and its
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X̂ and Ŷ axes are parallel tôx and ŷ, respectively. Hence the(X̂, Ŷ , Ẑ) and(x̂, ŷ, ẑ)

coordinate systems are related by the vertical translation

{ �X, �Y , �Z} =
{
�x, �y,

(
z + r0+ h

2
cosθ

)
ẑ

}
. (2)

2.3. Tilting operator

The transition from thereference latticeof vertically aligned molecules, to the
lattice of parallely aligned but arbitrarily oriented molecules is made by using thetilting
operator�n̂(θ) as given in [3]:

�n̂(θ) = Tn̂(θ)On̂(θ), (3)

whereOn̂(θ) is the rotation operator by angleθ about then̂-axis, and is given by [75]:

On̂(θ) = (cosθ)I + (sinθ)n̂×+ (1− cosθ)n̂n̂• (4)

andTn̂(θ) is thelocal realignment operatorgiven by [3]:

Tn̂(θ) = I − (tanθ)n̂×. (5)

Explicitly, the tilting operator�n̂(θ) is given by [3]:

�n̂(θ) = (secθ)I + (1− secθ)n̂n̂•, (6)

where the axis of tilting lies in the halfway plane, and is in then̂ = −î sinφ + ĵ cosφ
direction. The tilting angle, relative to the normal to the interface, isθ . The tilting of a
molecule takes place in a plane passing through its center and parallel to them̂ẑ-plane
wherem̂ = î cosφ + ĵ sinφ and ẑ is normal to the interface. The tilting operator can
alternatively be written in terms ofφ, as in [3]:

�(θ, φ)= (secθ)I + (1− secθ)

× [(
sin2 φ

)
î î − (sinφ cosφ)

(
îĵ + ĵ î

)+ (
cos2 φ

)
ĵ ĵ

] • . (7)

3. Lattice structure

The lattice of the centers of the molecules of the domain is the basic structure of
molecular organization at the domain level. Consequently, it is important to have at our
disposal a variety of different (but of course equivalent) mathematical expressions de-
scribing it. For close packed, parallely aligned and vertically oriented, spherocylindrical
molecules, the lattice formed by the centers of the molecules is given, relative to the
(x̂, ŷ, ẑ)-coordinate system, by [2]

�r�k ≡ �r�k(0,0) = r0
[
î
√

3�+ ĵ (2k − �)
]
, (8)

where� andk are integers. The zeros in the argument ofr�k indicate that the above lattice
corresponds to the case(θ, φ) = (0,0), that is the case of vertically aligned molecules.
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The lattice of arbitrarily oriented spherocylindrical molecules is obtained by applying
the tilting operator, as given by equations (6) or (7), to�r�k(0,0):

�r�k(θ, φ) = �n̂(θ)�r�k(0,0) ≡ �(θ, φ)�r�k(0,0). (9)

This is a compact form of the expression for the lattice of the centers of parallely aligned
and arbitrarily oriented close packed spherocylindrical molecules at the liquid–gas inter-
face.

It is worthwhile noting that equation (9) has a generality that goes beyond the
case studied here (that is the case where�r�k(0,0) is the reference latticefor hexago-
nally packedmolecules). Actually, equation (9) remains valid even when�r�k(0,0) is
the reference latticefor any type of packing. What�n̂(θ), or, equivalently,�(θ, φ), ex-
presses mathematically is the transformation (as measured by an observer stationed in
the halfway plane) undergone by a lattice site as the corresponding molecule tilts subject
to the constraint that its polar head remains tangent to the interface, and its cylindrical
part remains tangent to its neighbors.

3.1. Reference lattice

Let α�k designate thephase angleof lattice site(�, k), defined as the angle that
the reference lattice radius vector�r�k(0,0) makes with thex-axis (theNNN direction).
Then, due to equation (8), the phase angleα�k is given by

tanα�k = 2k − �√
3�

, (10)

cosα�k =
√

3�

2
√
k2+ �2− k�

, (11)

sinα�k = 2k − �

2
√
k2+ �2− k�

. (12)

Making use of equations (11) and (12), we can rewrite equation (8) as

�r�k(0,0)

2r0

√
k2+ �2− k�

= îcosα�k + ĵ sinα�k (13)

and due to equation (A.12) (see appendix A), it reduces to:

�r�k(0,0)

2r0

√
k2+ �2− k�

= Ok̂(α�k)î. (14)

Equation (13) expresses the reference lattice in the(x̂, ŷ, ẑ) coordinate system, and equa-
tion (14) generates the reference lattice from a unit vector along thex̂-axis. Alternatively,
by making use of equations (A.2) and (A.13), we can generate the reference lattice from
a unit vector along thêm-axis,

�r�k(0,0)

2r0

√
k2+ �2− k�

= Ok̂(α�k − φ)m̂(φ) (15)
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and due to equation (A.12) it is expressed in the(m̂, n̂, ẑ)-coordinate system as:

�r�k(0,0)

2r0

√
k2+ �2− k�

= m̂(φ) cos(α�k − φ)+ n̂(φ)sin(α�k − φ). (16)

3.2. Standard form

When the tilting operator, as given by equation (7), is applied to the reference
lattice of hexagonally close packed molecules, as given by equation (8), the resulting
explicit expression for the lattice is:

�r�k(θ, φ)= îr0
{
�
√

3
(
sin2 φ + secθ cos2 φ

)+ (2k − �)(secθ − 1) sinφ cosφ
}

+ ĵ r0
{
(2k − �)

(
secθ sin2 φ + cos2 φ

)+ �
√

3(secθ − 1) sinφ cosφ
}
. (17)

This is the first explicit expression for the lattice. It was derived in [3]. The length of the
lattice radius vector is given by (see [4, equation (4)])

r�k(θ, φ) = r0

√
4
(
�2+ k2− k�

)+ [√
3� cosφ + (2k − �) sinφ

]2
tan2 θ. (18)

3.3. The functionumn(θ, φ)

We define the functionumn(θ, φ) by

umn(θ, φ)=
(
secm θ − 1

)
sinφ cosφ

+ 1

2

[
1+ (−1)m

][
secn θ sin2 φ + sec1−n θ cos2 φ

]
. (19)

Equation (17) can then be rewritten in the form:

�r�k(θ, φ)= îr0
{
�
√

3u00(θ, φ)+ (2k − �)u10(θ, φ)
}

+ ĵ r0
{
(2k − �)u01(θ, φ)+ �

√
3u10(θ, φ)

}
. (20)

Making use of the Pythagorean identity, as well as the Ptolemy identities for the sine and
cosine functions, respectively, the expression forumn(θ, φ) can be rewritten as

2umn(θ, φ)=
(
secm θ − 1

)
sin 2φ

+ 1

2

[
1+ (−1)m

][(
sec1−n θ + secn θ

)+ (
sec1−n θ − secn θ

)
cos 2φ

]
. (21)

To evaluate (20) we need the expression ofumn(θ, φ) in the special casesm = 0,1 and
n = 0,1. Forn = 0,1 the following trigonometric identity holds:

sec1−n θ ± secn θ = (±1)n(secθ − 1), n = 0,1. (22)

Hence, forn = 0,1, the expression foru0n(θ, φ) reduces to

u0n(θ, φ) = 1

2

{
(secθ + 1)+ (−1)n(secθ − 1) cos 2φ

}
, n = 0,1. (23)
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Form = 1, u1n(θ, φ) is independent ofn and is easily seen to be given by

u1n(θ, φ) = 1

2
(secθ − 1) sin 2φ. (24)

Substituting from equations (23) and (24), into (20), and grouping the coefficients of
(secθ + 1) and(secθ − 1) in each component of�r�k(θ, φ), we obtain

2�r�k(θ, φ)= îr0
{
�
√

3(secθ + 1)+ (secθ − 1)
[
(2k − �) sin 2φ + �

√
3 cos 2φ

]}
+ ĵ r0

{
(2k − �)(secθ + 1)

− (secθ − 1)
[
(2k − �) cos 2φ − �

√
3 sin 2φ

]}
. (25)

This is the second explicit expression for the lattice of the centers of parallely
aligned and arbitrarily oriented, hexagonally close packed spherocylindrical molecules.
It underlines the Cartesian components of the lattice radius vector and brings out suc-
cinctly the functional dependence on the anglesθ andφ.

3.4. The phase angleα�k

Making use of expressions (11) and (12) for cosα�k and sinα�k, respectively, equa-
tion (25) can be rewritten as

�r�k(θ, φ)
r0

√
k2+ �2− k�

=
{
î[(secθ + 1) cosα�k + (secθ − 1)(cosα�k cos 2φ + sinα�k sin 2φ)]
+ĵ [(secθ + 1) sinα�k − (secθ − 1)(sinα�k cos 2φ − cosα�k sin 2φ)]

}
(26)

and using the Ptolemy trigonometric identities for the sum of two angles it reduces to

�r�k(θ, φ)
r0

√
k2+ �2− k�

=
{
î[(secθ + 1) cosα�k + (secθ − 1) cos(2φ − α�k)]
+ĵ [(secθ + 1) sinα�k + (secθ − 1) sin(2φ − α�k)]

}
. (27)

This is the third explicit expression for the lattice of the centers of parallely aligned
and arbitrarily oriented, hexagonally close packed spherocylindrical molecules. It un-
derlines the Cartesian components of the lattice radius vector and brings out the role
played by the phase angleα�k.

3.5. Decomposition of the lattice radius vector relative to the tilt azimuthφ

The radius vector�r�k(θ, φ) can be separated into two parts: one dependent on, and
the other independent of, the tilt azimuthφ, leading to

�r�k(θ, φ)
r0

√
k2+ �2− k�

=
{
(secθ + 1)[î cosα�k + ĵ sinα�k]
+(secθ − 1)[î cos(2φ − α�k)+ ĵ sin(2φ − α�k)]

}
. (28)
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By making use of equation (A.12), the above expression can be rewritten, in terms of the
rotation operator, in the form:

�r�k(θ, φ)
r0

√
k2+ �2− k�

= [
(secθ + 1)Ok̂(α�k)+ (secθ − 1)Ok̂(2φ − α�k)

]
î. (29)

Making use of equation (14) for thereference latticeradius vector we obtain

�r�k(θ, φ) = secθ + 1

2
�r�k(0,0)+ (secθ − 1)r0

√
k2+ �2− k�Ok̂(−α�k)Ok̂(2φ)î. (30)

Equations (28)–(30) provide three variants of the fourth explicit form of the ex-
pression for the lattice of the centers of parallely aligned and arbitrarily oriented close
packed spherocylindrical molecules. These expressions untangle and clearly underline
the contributions of the three factors involved:θ (the tilting angle),φ (the tilt azimuth)
and(�, k), the generalized topological coordinates of the lattice site. The values ofθ and
(�, k) influence both components of the vector�r�k(θ, φ), while φ only influences one of
them.

3.6. Decomposition of the lattice radius vector relative to the tilting angleθ

Equation (29) for the lattice radius vector can be written as

�r�k(θ, φ)
r0

√
k2+ �2− k�

= {
(secθ)

[
Ok̂(α�k)+Ok̂(2φ − α�k)

]

+ [
Ok̂(α�k)−Ok̂(2φ − α�k)

]}
î (31)

and making use of identities (A.7) and (A.8) (see appendix A), it can be rewritten as

�r�k(θ, φ)
2r0

√
k2+ �2− k�

= secθcos(φ − α�k)m̂(φ)− sin(φ − α�k)n̂(φ). (32)

Equation (31) can alternatively be written as

�r�k(θ, φ)
r0

√
k2+ �2− k�

= {
2Ok̂(α�k)+ (secθ − 1)

[
Ok̂(α�k)+Ok̂(2φ − α�k)

]}
î. (33)

By making use of equation (14) for the reference lattice, the above equation reduces to

�r�k(θ, φ) = �r�k(0,0) + (secθ − 1)r0

√
k2+ �2− k�

[
Ok̂(α�k)+Ok̂(2φ − α�k)

]
î (34)

and due to identity (A.8), it further reduces to the following form:

�r�k(θ, φ) = �r�k(0,0)+ 2(secθ − 1)r0

√
k2+ �2− k�cos(φ − α�k)m̂(φ). (35)

Equations (31)–(35) underline the dependence of the lattice radius vector on the
tilting angleθ . Equation (31) is in operator form, while equation (32) is in vector form
relative to the

(
m̂, n̂, ẑ

)
coordinate system. Expressions (34) and (35) relate the lattice

radius vector�r�k(θ, φ) to the reference lattice radius vector�r�k(0,0).
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3.7. Lattice generating operator

We define the lattice generating operatorG�k(θ, φ), by

�r�k(θ, φ) = r0G�k(θ, φ)î (36)

and, due to equations (29), (31) and (33), it is given by

G�k(θ, φ)√
k2+ �2− k�

= (secθ + 1)Ok̂(α�k)+ (secθ − 1)Ok̂(2φ − α�k) (37)

or, equivalently, by

G�k(θ, φ)√
k2+ �2− k�

=
{
(secθ)[Ok̂(α�k)+Ok̂(2φ − α�k)]
+[Ok̂(α�k)−Ok̂(2φ − α�k)]

}
(38)

or, equivalently, by

G�k(θ, φ)√
k2+ �2− k�

= 2Ok̂(α�k)+ (secθ − 1)
[
Ok̂(α�k)+Ok̂(2φ − α�k)

]
. (39)

The operatorG�k(θ, φ) generates the whole lattice from a unite vector along the
x-axis. Note that thex-axis is a secondary axis of symmetry of the reference lattice (it
is in theNNN direction). As a test of correspondence, the special caseφ = 0 of the
above expression for the lattice generating operator is worked out in appendix B, and it
correctly generates the lattice obtained in [2] for this special case.

Equation (36) in conjunction with (37), (38) or (39), is the fifth form of the ex-
pression for the lattice of the centers of parallely aligned and arbitrarily oriented, close
packed spherocylindrical molecules.

Both the tilting operator and the lattice generating operator, take advantage of the
abstract form of the rotation operator as given in [75]. They both produce the lattice
of the centers of the tilted molecules. The tilting operator generates the lattice of tilted
molecules from thereference latticeas input, and is valid for any type of packing. The
lattice generating operator generates the lattice of tilted molecules from the unite vector
along theNNN direction, but its applicability is restricted to hexagonal packing.

4. Analysis

In this section we study the characteristics of the lattice, using the results ob-
tained in section 3 above. We will be mainly concerned with symmetry (see [76]), loci
(see [77]), envelops (see [78,79]) and stationary points. All of the analytical results ob-
tained in this section can of course also be proved by projective geometrical arguments.
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4.1. The symmetry

The lattice generating operator hasC2 (2-fold) symmetry with respect to the an-
gleφ. That is,

G�k(θ, φ + π) = G�k(θ, φ). (40)

Equation (40) has its physical origin in theC2 symmetry of the spherocylindrical mole-
cules, and is easily seen to follow from expression (37) due to the univaluedness of the
rotation operator as a function ofφ, that is,Ok̂(ω + 2π) = Ok̂(ω).

4.2. The locus line

From equation (35) for the lattice radius vector it is seen that, asθ varies while
holdingφ, � andk fixed, the locus of lattice site(�, k) traces a straight line that we des-
ignate by�L�k(θ, φ). This locus line is in thêm(φ) direction, and is linear in(secθ − 1).

The tangent�T (L)
�k (θ, φ) to the locus line is equal to the partial derivative of�r�k(θ, φ)

with respect toθ , and is given by

�T (L)
�k (θ, φ) = ∂

∂θ
�r�k(θ, φ) = 2(secθ tanθ)r0

√
k2+ �2− k�cos(φ − α�k)m̂(φ). (41)

As could have been anticipated from the physical considerations of the present problem,
the tangent is in them̂(φ) direction for all values ofθ and all lattice sites(�, k).
The speed�V (L)

�k (θ, φ) with which the lattice site moves along the locus line varies
nonlinearly withθ according to secθ tanθ ; it varies sinusoidally withφ according to
cos(φ − α�k); and it varies with the site coordinates� andk according to

√
k2+ �2− k�.

4.3. The locus circle

As φ varies from 0 toπ , the vectorOk̂(2φ)î rotates through a complete circle.
Consequently, from equation (30) for the lattice radius vector it can easily be seen that,
asφ varies while holdingθ , � andk fixed, the locus of lattice site(�, k) traces a circle
that we designate byC�k(θ). This locus circle has a radius given by

a�k(θ) = (secθ − 1)r0

√
k2+ �2− k� (42)

and it is centered at

�c�k(θ) =
(

secθ + 1

2

)
�r�k(0,0). (43)

As expected, forθ = 0, the locus circleC�k(θ) collapses to a point (as seen from equa-
tion (42)), located at�r�k(0,0) (as seen from equation (43)).

In terms of the parameters of the locus circle, the lattice radius vector takes the
form:

�r�k(θ, φ) = �c�k(θ)+ a�k(θ)Ok(2φ − α�k)î. (44)
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As φ varies from 0 toπ , while holdingθ , � and k fixed, the tip of the lattice radius
vector �r�k(θ, φ) scans the points on the circumference of the locus circleC�k(θ). The
radiusa�k(θ) of the locus circle increases withθ according to(secθ−1) and it increases
with the site coordinates�, k according to

√
k2+ �2− k�. The radius vector�c�k(θ) from

the origin to the center of the locus circle increases withθ according to(secθ + 1).
The tangent�T (C)

�k (θ, φ) to the locus circle is equal to the partial derivative of
�r�k(θ, φ) with respect toφ, and is given by

�T (C)

�k (θ, φ) = ∂

∂φ
�r�k(θ, φ) = 2(secθ − 1)r0

√
k2+ �2− k�Ok(2φ − α�k)k̂ × î, (45)

where we have made use of equation (A.11), for the derivative of the rotation operator.

4.4. Common point of tangency

Theorem 1. The pointP�k at lattice site(�, k) of the reference lattice�r�k(0,0) is a com-
mon point of tangency for all the locus circlesC�k(θ).

Proof. Let the angleφ�k be defined by

φ�k = π

2
+ α�k (46)

and note that

cos(φ�k − α�k) = 0, Ok(2φ�k − α�k) = Ok(α�k)Ok(π). (47)

Evaluating equation (35) atφ = φ�k we obtain

�r�k(θ, φ)
∣∣
φ=φ�k

= �r�k(0,0). (48)

From equations (44), (45) and (48) it is seen that:

(i) P�k is a common point on all the locus circlesC�k(θ).

(ii) As the lattice site(�, k) moves on the locus circleC�k(θ), it reaches pointP�k

atφ = φ�k irrespective of the value ofθ .

(iii) The directionof the tangent vector�T (C)
�k (θ, φ) to locus circleC�k(θ) does not

depend on the value ofθ .

Hence thedirectionof the tangent vector�T (C)
�k (θ, φ) evaluated atP�k is the same for all

the locus circlesC�k(θ). This implies that all the locus circlesC�k(θ) are tangent to each
other atP�k, and this completes the proof of theorem 1. �

Evaluating equation (45) atφ = φ�k we obtain the expression for the tangent vector
at the common point of tangencyP�k as

�T (C)
�k (θ, φ)

∣∣
φ=φ�k

= −2(secθ − 1)r0

√
k2+ �2− k�Ok(α�k)k̂ × î. (49)
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The above equation can also be written as

�T (C)
�k (θ, φ)

∣∣
φ=φ�k

= −(secθ − 1)k̂ × �r�k(0,0), (50)

that is the tangent vector�T (C)
�k (θ, φ) is perpendicular to�r�k(0,0) atP�k.

Theorem 2. The common point of tangencyP�k is the point nearest to the origin on the
circumference of the locus circleC�k(θ) for all values of the tilting angleθ .

Proof. Since the physically allowed range of values of the tilting angleθ is 0 � θ �
π/2, then in this range secθ ± 1 � 0. Given this fact, it can then be seen from
equation (29) that�r�k(θ, φ) is made up of the sum of two vectors who’s lengths are
r0

√
k2+ �2− k�(secθ + 1) � 0 andr0

√
k2+ �2− k�(secθ − 1) � 0, respectively, and

who’s directions areOk̂(α�k)î andOk̂(2φ − α�k)î, respectively. Due to equation (47),
for φ = φ�k, the directions of these two vectors becomeOk̂(α�k)î andOk̂(π + α�k)î,
respectively. That is, forφ = φ�k = π/2+ α�k, the two vectors making up�r�k(θ, φ) are
antiparallel and, consequently, the length of the radius vector�r�k(θ, φ) is minimum for
this value ofφ.

But for φ = φ�k, �r�k(θ, φ) = �r�k(0,0) and the tip of�r�k(0,0) coincides withP�k.
Furthermore, according to theorem 1,P�k is the common point of tangency. Hence the
common point of tangencyP�k, of the locus circlesC�k(θ) associated with lattice site
(�, k), is the point nearest to the origin on the circumference of the locus circleC�k(θ)

for all values of the tilting angleθ . This completes the proof of theorem 2. �

4.5. The stationary point

As the tilt azimuthφ varies (holdingθ and�, k fixed), the lattice sites do vary as
described by equation (30). That is, the points of intersection of the molecular axes with
the half-way plane do vary withφ. Nevertheless, in this section we will demonstrate that
(i) the projection (on the half-way plane) of the molecular axis does have a stationary
point which is independent of the direction of inclinationφ, (ii) that this stationary point
is also independent of the inclination angleθ , and, finally, (iii) that this double stationary
point coincides with the common point of tangencyP�k.

4.5.1. Projection of the molecular axis
The vector−−→c0cq joining thecenter of the moleculeto the projection (on the halfway

plane) of thecenter of the molecular hemisphere no.q, whereq = 1,2 (see [4, figure 7]),
is given (via [4, equation (6)]), by

−−→c0cq = (−1)q
(
h sinθ

2

)
m̂(φ), q = 1,2. (51)
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Since the radius vector from the origin to the center of the molecule is given by�r�k(θ, φ),
then theparametric equationof theprojection(on the halfway plane) of theaxis of the
moleculecentered at lattice site(�, k) is given by:

�λ�k(θ, φ, β) = �r�k(θ, φ)+ βr0

√
k2+ �2− k�m̂(φ),

|β| �
(

h sinθ + 2r0

2r0

√
k2+ �2− k�

)
. (52)

Making use of equation (32) for�r�k(θ, φ), and extending the projection indefinitely in
both directions, the above equation can be rewritten as

�λ�k(θ, φ, β)

r0

√
k2+ �2− k�

= [
β + secθ cos(φ − α�k)

]
m̂(φ)− sin(φ − α�k)n̂(φ), (53)

whereβ is now a dimensionless variable in the range−∞ � β � +∞.

4.5.2. Variation of the projection withφ
The variation withφ of the points along the projection of the molecular axis on

the halfway plane can be obtained from equation (53) by making use of equation (A.15)
(see appendix A). This leads to

∂

∂φ

( �λ�k(θ, φ, β)

r0

√
k2+ �2− k�

)
=

{ [∂β/∂φ − (secθ − 1) sin(φ − α�k)]m̂(φ)

+[β + (secθ − 1) cos(φ − α�k)]n̂(φ)
}
. (54)

4.5.3. Existence of a stationary point
Let us assume for a moment that astationary point, with respect toφ, on the

projection of the molecular axis, does exist. Let the parameterβ at this stationary point
be given by the functionβ�k(θ, φ). Let the radius vector from the origin to this stationary
point be denoted by�λ�k. That is

�λ�k = �λ�k(θ, φ, β)
∣∣
β=β�k(θ,φ)

, (55)

where we have already anticipated, in the choice of notation, that the stationary point
will be independent, not only ofφ, but also ofθ . The condition for the existence of the
stationary point is

∂�λ�k(θ, φ, β)

∂φ

∣∣∣∣
β=β�k(θ,φ)

= 0 (56)

and it is easily seen from equation (54) that the above condition (56) has a solution given
by

β�k(θ, φ) = −(secθ − 1) cos(φ − α�k). (57)



A.F. Antippa / Lattice structure 209

4.5.4. Radius vector of the stationary point
Combining equations (53), (55) and (57), leads to the following expression for the

radius-vector from the origin to the stationary point on the projection of the molecular
axis:

�λ�k

r0

√
k2+ �2− k�

= m̂(φ) cos(φ − α�k)− n̂(φ) sin(φ − α�k). (58)

This stationary point is, by construction, independent ofφ, and as seen from equa-
tion (58) it is also independent ofθ . By comparing equations (16) and (58) we find
that

�λ�k = �r�k(0,0), (59)

that is the stationary point coincides with the common point of tangencyP�k. The above
results can be stated as

Theorem 3. The common point of tangencyP�k, (which is also site(�, k) of the refer-
ence lattice), is the double stationary point (with respect toθ andφ) of the projection
(on the half-way plane) of the molecular axis passing through lattice site(�, k).

4.6. The envelope circle

As φ andθ vary, the projection of the molecular axis, as parametrized by equa-
tions (52) and (53), has a stationary point�λ�k = �r�k(0,0) given by equation (59). Conse-
quently, the projection, as a function ofφ andθ , of the cylindrical part of the molecule,
forms a family of curves withφ andθ as variable parameters. This family of curves has
as envelope, a circle of radiusr0, centered at�λ�k = �r�k(0,0). In this section we will give
an analytic proof of this statement.

4.6.1. Projection of the molecular cylinder
Since the projection of the molecular axis on the half-way plane is in them̂(φ)

direction (as can be seen from equation (51)), and since�λ�k(θ, φ, β) provides a para-
metric representation of the radius vector from the origin to the different points on this
projection of the molecular axis on the half-way plan, then the parametric representation
of the radius vector�κ±�k(θ, φ, β), from the origin to points on the two boundaries of the
projection of themolecular cylinderon the half-way plane (see [4, figure 7]), is given by

�κ±�k(θ, φ, β) = �λ�k(β, θ, φ)± r0n̂(φ). (60)

Making use of equations (52) and (53) for�λ�k(θ, φ, β), the above parametric equation
for �κ±�k(θ, φ, β) can be rewritten in the following alternative forms:

�κ±�k(θ, φ, β) = �r�k(θ, φ)+ βr0

√
k2+ �2− k�m̂(φ)± r0n̂(φ),

|β| �
(

h sinθ

2r0

√
k2+ �2− k�

)
(61)
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or

�κ±�k(θ, φ, β)
r0

√
k2+ �2− k�

= [
β + secθ cos(φ − α�k)

]
m̂(φ)

−
[
sin(φ − α�k)∓ 1√

k2+ �2− k�

]
n̂(φ). (62)

4.6.2. The two special points on the projection of the molecular cylinder
Corresponding toβ = β�k(θ, φ), as given by equation (57), there are two special

points on the boundary of the projection of the cylindrical part of the molecule. Their
radius vectors from the origin are given by:

�κ±�k(θ, φ, β)
∣∣
β=β�k(θ,φ)

= �λ�k(θ, φ, β)
∣∣
β=β�k(θ,φ)

± r0n̂(φ) (63)

and due to equations (55) and (59) the above equation reduces to

�κ±�k(θ, φ, β)
∣∣
β=β�k(θ,φ)

= �r�k(0,0)± r0n̂(φ). (64)

We denote these special points by�K±�k(φ),
�K±�k(φ) = �κ±�k(θ, φ, β)

∣∣
β=β�k(θ,φ)

(65)

and due to equation (64), as well as equation (A.14) (see appendix A), they are given by

�K±�k(φ) = �r�k(0,0)± r0Ok̂(φ)ĵ . (66)

4.6.3. The envelope circle of the family of projections
Equation (66) clearly shows that, as the variable parameterφ varies from 0 to 2π ,

each branch of�K±�k(φ) traces a circle centered at�r�k(0,0) and havingr0 as radius. This
is expressed by the following theorem.

Theorem 4. The common point of tangencyP�k, (which is also site(�, k) of the refer-
ence lattice), is the center of the envelope circle for the family of lines (with anglesφ

andθ as variable parameters) forming the boundaries of the projection (on the half-way
plane) of the cylindrical part of the molecule centered at lattice site(�, k).

5. Graphical representations

5.1. Global lattice

5.1.1. Variation withθ
Figure 1 shows the variation of the lattice sites with the tilting angleθ for fixed tilt

azimuthφ. The tilting angleθ varies from 0◦ to 80◦ degrees in steps of 5◦ degrees. The
values of the tilt azimuth areφ = 0◦, 60◦, 90◦ and−45◦ for figures 1(a)–(d), respectively.

As expected from equation (35), the loci of the lattice sites are straight lines in the
m̂-direction (the direction ofφ) with angleθ as variable parameter. One can see that the
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Figure 1. Variation of the lattice sites with the tilting angleθ for fixed tilt azimuthφ. The angleθ varies
from 0◦ to 80◦ in steps of 5◦. (a)φ = 0◦, (b)φ = 60◦, (c)φ = 90◦, (d)φ = −45◦.

rate at which the lattice site moves along the locus line accelerates withθ . This is con-
sistent with the predicted speed which is proportional to secθ tanθ (see equation (41)).
From this same equation it is also seen that this speed has a

√
k2+ �2− k� dependence

on the generalized coordinates(�, k), and so the speed of the lattice site along the locus
line should increases as we go further out from the origin. This feature is also born out
by the graphic simulations of figures 1(a)–(d).

For φ = 0◦, 60◦ and 90◦, the n̂-axis (which is the tilting axis) coincides with
one of the axes of symmetry of the references lattice, and there are reference lattice sites
situated along it. As the molecules of the domain are tilted, the centers of these molecules
should remain stationary, and this feature is also born out by the graphic simulations. For
φ = −45◦, there are no reference lattice sites on the tilting axisn̂, except the site at the
origin. Hence there is only one stationary site (i.e., only one locus which is a point) in
this case.

The boldness of the lattice sites in figure 1 is directly proportional to the value of
the tilt angleθ . Note that, as we approach the boundaries, the locus lines get truncated at
increasingly lower tilt angles. That is, as we approach the boundaries, the surviving sites
(centers of molecules that are fully bounded by the domain) correspond to increasingly
lower tilt. The boundaries of the domain are determined by the procedure developed
in [4], using a domain diameterR given byR/r0 = 15 and molecules having a cylindri-
cal lengthh given byh/r0 = 20. r0 is the radius of the molecular cylinder, and it sets
the length scale.
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5.1.2. Variation withφ
Figure 2 shows the variation of the lattice sites with the tilt azimuthφ for fixed tilt

angleθ . The angleφ varies from 0◦ to 180◦ in steps of 10◦. The values of the tilting
angleθ areθ = 30◦, 45◦, 60◦ and 75◦ for figures 2(a), (b), (c) and (d), respectively.

The loci of all lattice sites are circles, as expected from equation (44). A variation
of π degrees inφ takes the lattice sites through a complete cycle due to theC2 symmetry
of the problem. The radius of the locus circles increases as we go further out from
the origin. This is due to its

√
k2+ �2− k� dependence on the generalized coordinates

(�, k), as seen from equation (42). Furthermore, as the inclination angleθ increases (in
going from figures 2(a)–(d)), the radii of the corresponding locus circles also increase
due to the(secθ − 1) factor of equation (42). Consequently, due to these combined
effects, the overlapping of the locus circles takes place for increasingly smaller values
of (�, k), as the value of the tilt angleθ increases.

The boldness of the lattice sites is directly proportional to the value of the tilt
azimuthφ. Note that, as we approach the boundaries, the locus circles get truncated. The
boundaries are determined by the procedure developed in [4], using a domain diameterR

given byR/r0 = 15 and molecules having a cylindrical lengthh given byh/r0 = 20,
wherer0 is the radius of the molecular cylinder.

Figure 2. Variation of the lattice sites with the tilt azimuthφ for fixed tilt angleθ . The angleφ varies from
0◦ to 180◦ degrees in steps of 10◦. (a)θ = 30◦; (b) θ = 45◦; (c) θ = 60◦; (d) θ = 75◦.
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5.2. One lattice site

5.2.1. Variation withθ
Figure 3 shows the variation of lattice site(�, k) with the tilt angleθ for fixed

values of tilt azimuthφ. The angleθ varies from 0◦ to 60◦ in steps of 10◦. In figure 3(a),
φ = 0◦ and(�, k) = (1,3). In figure 3(b),φ = −30◦ and(�, k) = (2,3). In figure 3(c),
φ = 45◦ and(�, k) = (3,3). In figure 3(d),φ = 60◦ and(�, k) = (4,3). The lengthh
of the cylindrical part of the molecule is given byh/r0 = 8, wherer0 is the radius of the
molecular cylinder.

The locus of the lattice site is a straight line in them̂ direction (see equation (35)),
and the secθ tanθ factor in the speed of the lattice site along the locus line (see equa-
tion (41)) is (at least qualitatively) visible.

5.2.2. Variation withφ
Figures 4–6 show the variation of a lattice site(�, k) with the tilt azimuthφ for

fixed tilt angleθ . The tilt azimuthφ varies from 0◦ to 180◦. For all of three figures the
values ofθ in the subfigures are given by (a)θ = 30◦; (b) θ = 45◦; (c) θ = 60◦; and
(d) θ = 75◦. The lengthh of the cylindrical part of the molecule is given byh/r0 = 8,
wherer0 is the radius of the molecular cylinder. Since the radius of the envelop circle is
constant (it is equal to the molecular radiusr0), it can serve as a comparative reference
scale for the subfigures.

Figure 3. Variation of lattice site(�, k) = (1,3) with the tilt angleθ for a tilt azimuthφ = 0◦. The angleθ
varies from 0◦ to 60◦ in steps of 10◦.
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Figure 4. The variation of lattice site(�, k) = (3,3) with the tilt azimuthφ. φ varies from 0◦ to 180◦ by
steps of 20◦. (a)θ = 30◦; (b) θ = 45◦; (c) θ = 60◦; (d) θ = 75◦.

Figure 5. The variation of lattice site(�, k) = (2, 3) with the tilt azimuthφ for fixed tilt angleθ . The
azimuthφ varies from 0◦ to 180◦ by small steps of 5◦.
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Figure 6. The variation of lattice site(�, k) = (2,3) with the tilt azimuthφ for tilt angle θ = 60◦. The
azimuthφ varies from 0◦ to 180◦ by steps of 10◦.

We note that:

(i) The locus of the lattice site is a circle (see equation (44)).

(ii) The center of this locus circle lies on the prolongation of the radius vector
�r�k ≡ �r�k(0,0) (see equation (43)).

(iii) This locus circle passes through pointP�k having �r�k ≡ �r�k(0,0) as radius
vector (see theorem 1).

(iv) P�k is the point on the locus circle which is nearest to the origin (see theo-
rem 2).

(v) The projections of the molecular axis on the plane of the lattice (the half-way
plane), all intersect atP�k (see theorem 3).

(vi) This point of intersectionP�k is the center of the envelope circle for the bound-
aries of the projections of the molecular cylinder (see theorem 4).

In figure 4,(�, k) is set to(3,3), and the tilt azimuthφ is varied in large steps of
,φ = 20◦ in order to clearly bring out the details listed above.

In figure 5,(�, k) is set to(2,3) and the tilt azimuthφ is varied in small steps of
,φ = 5◦ in order to bring out the global characteristics of the variation of the lattice
point withφ.

In figure 6,(�, k) is set to(2,3) (as in figure 5), but the tilt azimuthφ is varied in
intermediate steps of,φ = 10◦ in order to simultaneously bring out the detailed as well
as the global characteristics of the variation of the lattice point withφ. Furthermore, the
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Figure 7. The variation of lattice site(�, k) = (3, 3) with the tilt azimuthφ and the tilt angleθ . φ varies
from 0◦ to 180◦ in steps of 10◦, while θ varies from 30◦ to 75◦ in steps of 15◦. Also shown are the centers

of the locus circles.

molecular hemispheres have been suppressed in order to better identify the characteris-
tics listed above, specially for large values of the tilt angleθ where the figures become
visually rather complicated.

5.2.3. Combined variation withθ andφ

In the previous figures we studied separately, and in detail, the variation of the
lattice sites with the tilting angleθ and with the azimuth angleφ. In figures 7–10 we
will study the combined effect ofθ andφ on a lattice site. In all four figures,(�, k) is
set equal to(3,3), φ varies from 0◦ to 180◦ in steps of 10◦, andθ varies from 30◦ to 75◦
in steps of 15◦. Figure 7 shows the loci of the lattice site and the centers of the locus
circles. Figure 8 shows the loci of the projection of the molecular axis. Figure 9 shows
the loci of the boundary of the molecular projection. Figure 10 shows the loci of the full
molecular projection.

6. Conclusion

This paper is the fifth in a series of articles [1–4] that progressively and system-
atically develop a detailed analytical molecular model for Langmuir films. The main
results of the present paper are:

(i) The introduction (via equations (25), (27), (29), (30)–(33) and (35)) of sev-
eralnew expressionsfor the lattice radius vector.



A.F. Antippa / Lattice structure 217

Figure 8. The variation of lattice site(�, k) = (3,3), as well as the projection of the molecular axis, with
the tilt azimuthφ and the tilt angleθ . φ varies from 0◦ to 180◦ in increments of 10◦, while θ varies from

30◦ to 75◦ in increments of 15◦. Also shown are the centers of the locus circles.

Figure 9. The variation of lattice site(�, k) = (3,3), as well as the boundaries of the molecular projection,
with the tilt azimuthφ and tilt angleθ . φ varies from 0◦ to 180◦ in increments of 10◦, while θ varies from

30◦ to 75◦ in increments of 15◦.



218 A.F. Antippa / Lattice structure

Figure 10. The variation of lattice site(�, k) = (3, 3), as well as the molecular projection, with the tilt
azimuthφ and tilt angleθ . φ varies from 0◦ to 180◦ in steps of 10◦, while θ varies from 30◦ to 75◦ in steps

of 15◦. Also shown are the centers of the locus circles.

(ii) The introduction (via equation (10)) of thephase angleα�k associated with
a lattice site.

(iii) The introduction (via equations (37)–(39)) of thelattice generating operator
G�k(θ, φ).

(iv) The proof that thelocusof a lattice site (as the angleφ goes through a com-
plete cycle) is a circle.

(v) The determination (via equations (42) and (43)) of theparametersof this
locus circle.

(vi) The proof (via theorem 1) of the existence of acommon point of tangency
for the locus circles corresponding to different values of the tilting angleθ .

(vii) The proof (via theorem 1) that the common points of tangency coincide with
the sites of the reference lattice.

(viii) The proof (via theorem 2) of aminimalitycharacteristic of the common point
of tangency.

(ix) The proof (via theorem 3) of the existence of adouble stationary pointon
the projection (on the half-way plane) of the molecular axis.

(x) The proof (via theorem 3) that this stationary point coincides with the com-
mon point of tangency.
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(xi) The proof (via theorem 4) that the envelope of the family of lines (with angle
φ as a variable parameter) forming the boundaries of the projection (on the
half-way plane) of the cylindrical part of the molecule is a circle.

(xii) The determination (via equation (66)) of the parameters of this envelope
circle.

(xiii) The proof (via theorem 4 and equation (66)) that the center of this envelope
circle lies at the common point of tangency.

The importance of the above results resides in the fact that domains are the building
blocks of Langmuir films, and that the lattice formed by the centers of their molecules is
the backbone of their molecular organization.
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Appendix A. Rotation operator

This appendix is essentially a compendium of expressions related to the rotation
operator and used in the main text of the paper. The operator for a finite rotation by angle
±ω about an axiŝq is given, via equation (4), by

Oq̂(±ω) = (cosω)I ± (sinω)q̂×+ (1− cosω)q̂q̂ • . (A.1)

Successive rotations about the same axis are associative and commutative:

Oq̂ (α + β) = Oq̂ (α)Oq̂(β) = Oq̂ (β)Oq̂ (α). (A.2)

A.1. Operator identities

From equation (A.1) we have

Oq̂(ω)±Oq̂ (−ω)= (1± 1)(cosω)I + (1∓ 1)(sinω)q̂×
+ (1± 1)(1− cosω)q̂q̂ • . (A.3)

For a vector�ρ which is perpendicular to thêq axis, q̂ • �ρ = 0 and, identity (A.3) leads
to the following two very useful identities[

Oq̂ (ω)+Oq̂ (−ω)
] �ρ = 2(cosω) �ρ (A.4)
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and [
Oq̂ (ω)−Oq̂(−ω)

] �ρ = 2(sinω)q̂ × �ρ. (A.5)

Identities (A.4) and (A.5) could have as easily been proved by simple geometrical ar-
guments applied to the parallelogram rule of vector addition. On the other hand, the
operator formalism provides a concise language for stating the mathematical arguments
and relations.

As an application of these identities we will evaluate an expression that arises in the
main part of the paper. Making use of identity (A.2), and the fact thatOk̂(−φ)Ok̂(φ) = I

we have[
Ok̂(α�k)±Ok̂(2φ − α�k)

]
î = [

Ok̂(α�k − φ)±Ok̂(φ − α�k)
]
Ok̂(φ)î (A.6)

and due to identities (A.4) and (A.5), and the fact thatOk̂(φ)î = m̂(φ), we have the two
relations: [

Ok̂(α�k)+Ok̂(2φ − α�k)
]
î = 2cos(φ − α�k)m̂(φ) (A.7)

and [
Ok̂(α�k)−Ok̂(2φ − α�k)

]
î = −2sin(φ − α�k)n̂(φ). (A.8)

A.2. Operator derivative

The derivative of the operatorOq̂(ω) is given by

∂

∂ω
Oq̂ (ω) = lim

δω→0

Oq̂ (ω + δω)−Oq̂ (ω)

δω
= Oq̂ (ω) lim

δω→0

Oq̂(δω)− I

δω
(A.9)

and since (see [75]) as seen from equation (A.1)

Oq̂ (δω) = I + (δω)q̂× (A.10)

then, combining equations (A.9) and (A.10) we have

∂

∂ω
Oq̂ (ω) = Oq̂ (ω)q̂× (A.11)

which is the desired result.

A.3. Special cases

For a vector�ρ which is perpendicular to thêq axis,q̂ • �ρ = 0 and expression (A.1)
leads to

Oq̂ (ω) �ρ = (cosω) �ρ + (sinω)q̂ × �ρ. (A.12)

Due to the definition of the(m̂, n̂, ẑ) coordinate system, we have

m̂(φ)=Ok̂(φ)î = î cosφ + ĵ sinφ, (A.13)

n̂(φ)=Ok̂(φ)ĵ = ĵ cosφ − î sinφ (A.14)



A.F. Antippa / Lattice structure 221

and making use of equation (A.11) for the derivative of the rotation operator, and the
fact thatk̂ × m̂(φ) = n̂(φ) andk̂ × n̂(φ) = −m̂(φ), leads to

∂m̂(φ)

∂φ
= n̂(φ),

∂n̂(φ)

∂φ
= −m̂(φ). (A.15)

Combining identity (A.2) and equations (A.12)–(A.14), leads to:

Ok̂(2φ − α�k)î = m̂(φ) cos(φ − α�k)+ n̂(φ) sin(φ − α�k) (A.16)

and

Ok̂(2φ − α�k)ĵ = n̂(φ) cos(φ − α�k)− m̂(φ) sin(φ − α�k). (A.17)

Appendix B. Lattice generating operator for zero tilt azimuth

Forφ = 0, expression (38) for the Lattice Generating OperatorG�k(θ, φ) reduces
to

G�k(θ,0)√
k2+ �2− k�

= (secθ)
[
Ok̂(α�k)+Ok̂(−α�k)

]+ [
Ok̂(α�k)−Ok̂(−α�k)

]
(B.1)

and the lattice radius vector forφ = 0 is given, via equation (36), by

�r�k(θ,0) = r0G�k(θ,0)î. (B.2)

Combining equations (B.1) and (B.2) we have

�r�k(θ,0)

r0

√
k2+ �2− k�

= (secθ)
[
Ok̂(α�k)+Ok̂(−α�k)

]
î+ [

Ok̂(α�k)−Ok̂(−α�k)
]
î (B.3)

and making use of identities (A.4) and (A.5) of appendix Appendix A, the above expres-
sion for the lattice radius vector reduces to

�r�k(θ,0)

2r0

√
k2+ �2− k�

= îsecθ cosα�k + ĵ sinα�k (B.4)

and due to equations (11) and (12), it reduces further to

�r�k(θ,0) = r0
[(√

3� secθ
)
î + (2k − �)ĵ

]
(B.5)

which is the result obtained in [3].
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